domingo, 7 de julio de 2013

chemical

    Dmitri Mendeleev published the first periodic table in 1869. He showed that when the elements were ordered according to atomic weight, a pattern resulted where similar properties for elements recurred periodically. Based on the work of physicist Henry Moseley, the periodic table was reorganized on the basis of increasing atomic number rather than on atomic weight. The revised table could be used to predict the properties of elements that had yet to be discovered. Many of these predictions were later substantiated through experimentation. This led to the formulation of the periodic law, which states that the chemical properties of the elements are dependent on their atomic numbers.


   Elements in the periodic table are arranged in periods (rows) and groups (columns). Each of the seven periods is filled sequentially by atomic number. Groups include elements having the same electron configuration in their outer shell, which results in group elements sharing similar chemical properties. The electrons in the outer shell are termed valence electrons. Valence electrons determine the properties and chemical reactivity of the element and participate in chemical bonding. The Roman numerals found above each group specify the usual number of valence electrons. There are two sets of groups. The group A elements are the representative elements, which have s or p sublevels as their outer orbitals. The group B elements are the nonrepresentative elements, which have partly filled d sublevels (the transition elements) or partly filled f sublevels (the lanthanide series and the actinide series). The Roman numeral and letter designations give the electron configuration for the valence electrons (e.g., the valence electron configuration of a group VA element will be s2p3 with 5 valence electrons).


     A periodic table is a tabular display of the chemical elements, organized on the basis of their atomic numbers, electron configurations, and recurring chemical properties. Elements are presented in order of increasing atomic number (number of protons). The standard form of table comprises an 18 × 7 grid or main body of elements, positioned above a smaller double row of elements. The table can also be deconstructed into four rectangular blocks: the s-block to the left, the p-block to the right, the d-block in the middle, and the f-block below that. The rows of the table are called periods; the columns of the s-, d-, and p-blocks are called groups, with some of these having names such as the halogens or the noble gases. Since, by definition, a periodic table incorporates recurring trends, any such table can be used to derive relationships between the properties of the elements and predict the properties of new, yet to be discovered or synthesized, elements. As a result, a periodic table—whether in the standard form or some other variant—provides a useful framework for analyzing chemical behavior, and such tables are widely used in chemistry and other sciences.
Although precursors exist, Dmitri Mendeleev is generally credited with the publication, in 1869, of the first widely recognized periodic table. He developed his table to illustrate periodic trends in the properties of the then-known elements. Mendeleev also predicted some properties of then-unknown elements that would be expected to fill gaps in this table. Most of his predictions were proved correct when the elements in question were subsequently discovered. Mendeleev's periodic table has since been expanded and refined with the discovery or synthesis of further new elements and the development of new theoretical models to explain chemical behavior.
     All elements from atomic numbers 1 (hydrogen) to 118 (ununoctium) have been discovered or synthesized. Of these, all up to and including californium exist naturally; the rest have only been synthesized in laboratories. Production of elements beyond ununoctium is being pursued, with the question of how the periodic table may need to be modified to accommodate any such additions being a matter of ongoing debate. Numerous synthetic radionuclides of naturally occurring elements have also been produced in laboratorios

All versions of the periodic table include only chemical elements, not mixtures, compounds, or subatomic particles.Each chemical element has a unique atomic number representing the number of protons in its nucleus. Most elements have differing numbers of neutrons among different atoms, with these variants being referred to as isotopes. For example, carbon has three naturally occurring isotopes: all of its atoms have six protons and most have six neutrons as well, but about one per cent have seven neutrons, and a very small fraction have eight neutrons. Isotopes are never separated in the periodic table; they are always grouped together under a single element. Elements with no stable isotopes have the atomic masses of their most stable isotopes, where such masses are shown, listed in parentheses.


As of 2012, the periodic table contains 118 confirmed chemical elements. Of these elements, 114 have been officially recognized and named by the International Union of Pure and Applied Chemistry (IUPAC). A total of 98 of these occur naturally, of which 84 are primordial. The other 14 natural elements only occur in decay chains of primordial elements. All elements from einsteinium to copernicium, as well as flerovium and livermorium, while not occurring naturally in the universe, have been duly synthesized and officially recognized by the IUPAC. Elements 113, 115, 117 and 118 have reportedly been synthesized in laboratories but these reports have not yet been confirmed. As such these elements are currently known only by their systematic element names, based on their atomic numbers. No element heavier than einsteinium (element 99) has ever been observed in macroscopic quantities in its pure form. No elements past 118 have been synthesized as of 2012.
GROUPING METHODS

* GROUPS
A group or family is a vertical column in the periodic table. Groups usually have more significant periodic trends than periods and blocks, explained below. Modern quantum mechanical theories of atomic structure explain group trends by proposing that elements within the same group generally have the same electron configurations in their valence shell. Consequently, elements in the same group tend to have a shared chemistry and exhibit a clear trend in properties with increasing atomic number. However in some parts of the periodic table, such as the d-block and the f-block, horizontal similarities can be as important as, or more pronounced than, vertical similarities.
Under an international naming convention, the groups are numbered numerically from 1 to 18 from the leftmost column (the alkali metals) to the rightmost column (the noble gases). Previously, they were known by roman numerals. In America, the roman numerals were followed by either an "A" if the group was in the s- or p-block, or a "B" if the group was in the d-block. The roman numerals used correspond to the last digit of today's naming convention (e.g. the group 4 elements were group IVB, and the group 14 elements was group IVA). In Europe, the lettering was similar, except that "A" was used if the group was before group 10, and "B" was used for groups including and after group 10. In addition, groups 8, 9 and 10 used to be treated as one triple-sized group, known collectively in both notations as group VIII. In 1988, the new IUPAC naming system was put into use, and the old group names were deprecated.

* PERIODS
A period is a horizontal row in the periodic table. Although groups generally have more significant periodic trends, there are regions where horizontal trends are more significant than vertical group trends, such as the f-block, where the lanthanides and actinides form two substantial horizontal series of elements.
Elements in the same period show trends in atomic radius, ionization energy, electron affinity, and electronegativity. Moving left to right across a period, atomic radius usually decreases. This occurs because each successive element has an added proton and electron which causes the electron to be drawn closer to the nucleus. This decrease in atomic radius also causes the ionization energy to increase when moving from left to right across a period. The more tightly bound an element is, the more energy is required to remove an electron. Electronegativity increases in the same manner as ionization energy because of the pull exerted on the electrons by the nucleus. Electron affinity also shows a slight trend across a period. Metals (left side of a period) generally have a lower electron affinity than nonmetals (right side of a period), with the exception of the noble gases.
* BLOCKS
Because of the importance of the outermost electron shell, the different regions of the periodic table are sometimes referred to as blocks, named according to the subshell in which the "last" electron resides. The s-block comprises the first two groups (alkali metals and alkaline earth metals) as well as hydrogen and helium. The p-block comprises the last six groups which are groups 13 to 18 in IUPAC (3A to 8A in American) and contains, among other elements, all of the metalloids. The d-block comprises groups 3 to 12 in IUPAC (or 3B to 2B in American group numbering) and contains all of the transition metals. The f-block, usually offset below the rest of the periodic table, comprises the lanthanides and actinides.

A diagram of the periodic table, highlighting the different blocks 

* OTHER CONVENTIONS AND VARIATIONS
In presentations of the periodic table, the lanthanides and the actinides are customarily shown as two additional rows below the main body of the table, with placeholders or else a selected single element of each series (either lanthanum or lutetium, and either actinium or lawrencium, respectively) shown in a single cell of the main table, between barium and hafnium, and radium and rutherfordium, respectively. This convention is entirely a matter of aesthetics and formatting practicality; a rarely used wide-formatted periodic table inserts the lanthanide and actinide series in their proper places, as parts of the table's sixth and seventh rows (periods).



The discovery of the elements mapped to significant periodic table development dates (pre-, per- and post-) In 1789, Antoine Lavoisier published a list of 33 chemical elements, grouping them into gases, metals, nonmetals, and earths; Chemists spent the following century searching for a more precise classification scheme. In 1829, Johann Wolfgang Döbereiner observed that many of the elements could be grouped into triads based on their chemical properties. Lithium, sodium, and potassium, for example, were grouped together in a triad as soft, reactive metals. Döbereiner also observed that, when arranged by atomic weight, the second member of each triad was roughly the average of the first and the third; this became known as the Law of Triads. German chemist Leopold Gmelin worked with this system, and by 1843 he had identified ten triads, three groups of four, and one group of five. Jean-Baptiste Dumas published work in 1857 describing relationships between various groups of metals. Although various chemists were able to identify relationships between small groups of elements, they had yet to build one scheme that encompassed them all. In 1858, German chemist August Kekulé observed that carbon often has four other atoms bonded to it. Methane, for example, has one carbon atom and four hydrogen atoms. This concept eventually became known as valency; different elements bond with different numbers of atoms.

In 1862, Alexandre-Emile Béguyer de Chancourtois, a French geologist, published an early form of periodic table, which he called the telluric helix or screw. He was the first person to notice the periodicity of the elements. With the elements arranged in a spiral on a cylinder by order of increasing atomic weight, de Chancourtois showed that elements with similar properties seemed to occur at regular intervals. His chart included some ions and compounds in addition to elements. His paper also used geological rather than chemical terms and did not include a diagram; as a result, it received little attention until the work of Dmitri Mendeleev. In 1864, Julius Lothar Meyer, a German chemist, published a table with 44 elements arranged by valency. The table showed that elements with similar properties often shared the same valency. Concurrently, William Odling (an English chemist) published an arrangement of 57 elements, ordered on the basis of their atomic weights. With some irregularities and gaps, he noticed what appeared to be a periodicity of atomic weights amongst the elements and that this accorded with 'their usually received groupings.' Odling alluded to the idea of a periodic law but did not pursue it. He subsequently proposed (in 1870) a valence-based classification of the elements. English chemist John Newlands produced a series of papers in 1864 and 1865 noting that when the elements were listed in order of increasing atomic weight, similar physical and chemical properties recurred at intervals of eight; he likened such periodicity to the octaves of music.[51][52] This Law of Octaves, however, was ridiculed by Newlands' contemporaries, and the Chemical Society refused to publish his work. Newlands was nonetheless able to draft a table of the elements and used it to predict the existence of missing elements, such as germanium. The Chemical Society only acknowledged the significance of his discoveries five years after they credited Mendeleev. In 1867, Gustavus Hinrichs, a Danish born academic chemist based in America, published a spiral periodic system based on atomic spectra and weights, and chemical similarities. His work was regarded as idiosyncratic, ostentatious and labyrinthine and this may have militated against its recognition and acceptance.

Russian chemistry professor Dmitri Mendeleev and German chemist Julius Lothar Meyer independently published their periodic tables in 1869 and 1870, respectively. Mendeleev's table was his first published version; that of Meyer was an expanded version of his (Meyer's) table of 1864. They both constructed their tables by listing the elements in rows or columns in order of atomic weight and starting a new row or column when the characteristics of the elements began to repeat.
The recognition and acceptance afforded Mendeleev's table came from two decisions he made. The first was to leave gaps in the table when it seemed that the corresponding element had not yet been discovered. Mendeleev was not the first chemist to do so, but he was the first to be recognized as using the trends in his periodic table to predict the properties of those missing elements, such as gallium and germanium. The second decision was to occasionally ignore the order suggested by the atomic weights and switch adjacent elements, such as tellurium and iodine, to better classify them into chemical families. With the development of theories of atomic structure, it became apparent that Mendeleev had unintentionally listed the elements in order of increasing atomic number or nuclear charge.
The significance of atomic numbers to the organization of the periodic table was not appreciated until the existence and properties of protons and neutrons became understood. Mendeleev's periodic tables used atomic weight instead of atomic number to organize the elements, information determinable to fair precision in his
time. Atomic weight worked well enough in most cases to (as noted) give a presentation that was able to predict the properties of missing elements more accurately than any other method then known. Substitution of atomic numbers, once understood, gave a definitive, integer-based sequence for the elements, still used today even as new synthetic elements are being produced and studied.
 In 1871, Mendeleev published an updated form of periodic table (shown at left), as well as giving detailed predictions for the elements he had earlier noted were missing, but should exist. These gaps were subsequently filled as chemists discovered additional naturally occurring elements. It is often stated that the last naturally occurring element to be discovered was francium (referred to by Mendeleev as eka-caesium) in 1939. However, plutonium, produced synthetically in 1940, was identified in trace quantities as a naturally occurring primordial element in 1971, and in 2011 it was found that all the elements up to californium can occur naturally as trace amounts in uranium ores by neutron capture and beta decay.The popular periodic table layout, also known as the common or standard form (as shown at various other points in this article), is attributable to Horace Groves Deming. In 1923, Deming, an American chemist, published short (Mendeleev style) and medium (18-column) form periodic tables. Merck and Company prepared a handout form of Deming's 18-column medium table, in 1928, which was widely circulated in American schools. By the 1930s Deming's table was appearing in handbooks and encyclopaedias of chemistry. It was also distributed for many years by the Sargent-Welch Scientific Company. With the development of modern quantum mechanical theories of electron configurations within atoms, it became apparent that each period (row) in the table corresponded to the filling of a quantum shell of electrons. Larger atoms have more electron sub-shells, so later tables have required progressively longer periods.

In 1945, Glenn Seaborg, an American scientist, made the suggestion that the actinide elements, like the lanthanides were filling an f sub-level. Before this time the actinides were thought to be forming a fourth d-block row. Seaborg's colleagues advised him not to publish such a radical suggestion as it would most likely ruin his career. As Seaborg considered he did not then have a career to bring into disrepute, he published anyway. Seaborg's suggestion was found to be correct and he subsequently went on to win the 1951 Nobel prize in chemistry for his work in synthesizing actinide elements. Although minute quantities of some transuranic elements occur naturally,they were all first discovered in laboratories. Their production has expanded the periodic table significantly, the first of these being neptunium, synthesized in 1939. Because many of the transuranic elements are highly unstable and decay quickly, they are challenging to detect and characterize when produced. There have been controversies concerning the acceptance of competing discovery claims for some elements, requiring independent review to determine which party has priority, and hence naming rights. The most recently accepted and named elements are flerovium (element 114) and livermorium (element 116), both named on 31 May 2012.In 2010, a joint Russia–US collaboration at Dubna, Moscow Oblast, Russia, claimed to have synthesized six atoms of ununseptium (element 117), making it the most recently claimed discovery. 


A chemical element is a pure chemical substance consisting of one type of atom distinguished by its atomic number, the number of protons in its nucleus. They are divided into metals, metalloids, and non-metals. Familiar examples of elements include carbon, oxygen (non-metals), silicon, arsenic (metalloids), aluminium, iron, copper, gold, mercury, and lead (metals).
As of November 2011, 118 elements have been identified, the latest being ununseptium in 2010. Of the 118 known elements, only the first 98 are known to occur naturally on Earth; 80 of them are stable, while the others are radioactive, decaying into lighter elements over various timescales from fractions of a second to billions of years. Those elements that do not occur naturally on Earth have been produced artificially as the synthetic products of man-made nuclear reactions. Hydrogen and helium are by far the most abundant elements in the universe. However, iron is the most abundant element (by mass) making up the Earth, and oxygen is the most common element in the Earth's crust. Although all known chemical matter is composed of these elements, chemical matter itself is hypothesized to constitutes only about 15% of the matter in the universe. The remainder is believed to be dark matter, a mysterious substance which is not composed of chemical elements since it lacks protons, neutrons or electrons.
The chemical elements are thought to have been produced by various cosmic processes, including hydrogen, helium (and smaller amounts of lithium, beryllium and boron) created during the Big Bang and cosmic-rayspallation.

Production of heavier elements, from carbon to the very heaviest elements, proceeds by stellar nucleosynthesis, and these were made available for later solar system and planetary formation by planetary nebulae and supernovae, which blast these elements into space. The high abundance of oxygen, silicon, and iron on Earth reflect their common production in such stars, after the lighter gaseous elements and their compounds have been subtracted. While most elements are generally viewed as stable, a small amount of natural transformation of one element to another also occurs in the present time, through decay of radioactive elements as well as other natural nuclear processes.
Relatively pure samples of isolated elements are uncommon in nature. While all of the 98 naturally occurring elements have been identified in mineral samples from the Earth's crust, only a small minority of elements are found as recognizable, relative pure minerals. Among the more common of such "native elements" are copper, silver, gold, carbon (as coal, graphite, or diamonds), sulfur, and mercury. All but a few of the most inert elements, such as noble gases and noble metals, are usually found on Earth in chemically combined form, as chemical compounds. While about 32 of the chemical elements occur on Earth in native uncombined form, most of these occur as mixtures. For example, atmospheric air is primarily a mixture of nitrogen, oxygen, and argon, and native solid elements occur in alloys, such as that of iron and nickel.

When two distinct elements are chemically combined, with the atoms held together by chemical bonds, the result is termed a chemical compound. Two thirds of the chemical elements occur on Earth only as compounds, and in the remaining third, often the compound forms of the element are most common.[citation needed] Chemical compounds may be composed of elements combined in exact whole-number ratios of atoms, as in water, table salt, and minerals as quartz, calcite, and some ores. However, chemical bonding of many types of elements results in crystallinesolids and metallicalloys for which exact chemical formulas do not exist.
The history of discovery and use of the elements began with primitive human societies that found native elements like copper and gold, and extracted (smelted) iron and a few other metals from their ores. Alchemists and chemists subsequently identified many more, with nearly all of the naturally-occurring elements known by 1900. The properties of the chemical elements are often summarized using the periodic table that organizes the elements by increasing atomic number into rows ("periods") in which the columns ("groups") 

ACIDS AND BASES


For thousands of years people have known that vinegar, lemon juice and many other foods taste sour. However, it was not until a few hundred years ago that it was discovered why these things taste sour - because they are all acids. The term acid, in fact, comes from the Latin term acere, which means "sour". While there are many slightly different definitions of acids and bases, in this lesson we will introduce the fundamentals of acid/base chemistry. In the seventeenth century, the Irish writer and amateur chemist Robert Boyle first labeled substances as either acids or bases (he called bases alkalies) according to the following characteristics:
* Acids taste sour, are corrosive to metals, change litmus (a dye extracted from lichens) red, and become less acidic when mixed with bases.

* Bases feel slippery, change litmus blue, and become less basic when mixed with acids. While Boyle and others tried to explain why acids and bases behave the way they do, the first reasonable definition of acids and bases would not be proposed until 200 years later. In the late 1800s, the Swedish scientist Svante Arrhenius proposed that water can dissolve many compounds by separating them into their individual ions. Arrhenius suggested that acids are compounds that contain hydrogen and can dissolve in water to release hydrogen ions into solution. For example, hydrochloric acid (HCl) dissolves in water as follows:
HCl H2O arrow H+(aq) + Cl-(aq) Arrhenius defined bases as substances that dissolve in water to release hydroxide ions (OH-) into solution. For example, a typical base according to the Arrhenius definition is sodium hydroxide (NaOH)

 FORMULATION

Formulation is a term used in various senses in various applications, both the material and the abstract or formal. Its fundamental meaning is the putting together of components in appropriate relationships or structures, according to a formula. It might help to reflect that etymologically Formula is the diminutive of the LatinForma, meaning shape.

* ABSTRACT APPLICATIONS

Disciplines in which one might use the word formulation in the abstract sense include Logic, Mathematics, Linguistics, Legal theory, and Computer science. For details, see the related articles.

* MATERIAL APPLICATIONS

In more material senses the concept of formulation appears in the physical sciences, such as physics, chemistry, and biology. It also is ubiquitous in industry, engineering and medicine, especially pharmaceutics.

* PHARMACY

In pharmacy, a formulation is a mixture or a structure such as a capsule, a pill, tablet, or an emulsion, prepared according to a specific procedure (called a “formula”). Formulations are a very important aspect of creating medicines, since they are essential to ensuring that the active part of the drug is delivered to the correct part of the body, in the right concentration, and at the right rate (not too fast and not too slowly). They also need to have an acceptable taste (in the case of pills, tablets or syrups), last long enough in storage still to be safe and effective when used, and be sufficiently stable both physically and chemically to be transported from where they are manufactured to the eventual consumer. Competently designed formulations for particular applications are safer, more effective, and more economical than any of their components used singly.

OTHER EXAMPLES OF PRODUCT FORMULATIONS

* COMPONENTS. Some components impart specific properties to the formulation when it is put into use. For example, certain components (polymers) are used in paint formulations to
achieve deforming or levelling properties. Some components of a formulation may only be active in particular applications.
A formulation may be created for any of the following purposes:
* to achieve effects that cannot be obtained from its components when these are used singly
* to achieve a higher degree of effectiveness * to facilitate any potential synergistic action of their components
* to improve handling properties and often safety for the user
CONCLUSION


The periodic table is one of the most important achievements in the field of chemistry. It is full of patterns that enable us to better understand the world around us. Without it, we would not have many of the products and medicine that we have today. The information gained from the periodic table can open up numerous windows of knowledge about the entire universe we live in. From this activity you should have a much more in depth understanding of the periodic table.

No hay comentarios:

Publicar un comentario